OOPSLA 2002 Domain Specific Languages

Position Paper for OOPSLA 2002 Workshop:
Using Domain Specific Languages to Drive Business Applications

Design considerations for applications
that use domain-specific languages

Jim Tyhurst, Ph.D.
Tyhurst Technology Group LLC

Copyright © 2002 by Jim Tyhurst. All rights reserved.

Contents

1. Introduction
2. Design Problems
3. Editing Rules
3.1 Fat client vs. thin client
3.2. Including rules by reference
3.3. Versioning rules
3.4. ~ Debugging rules
4. Storing Rules
4.1. Specifications of rules vs. implementation of rule behavior
4.2, XML as a common format for rule representations
5. Using Rules at Run-Time
5.1. Multiple interpreters
5.2. Deploying rules

6. Conclusion
7. References
8. Contact Information

1. Introduction

Over the last two years, I have worked on several applications that I would characterize as
"dynamically configurable" by domain experts. In one case, the application provides a
general tool for capturing domain knowledge about structured events, such as radiological
observations or specifications of pharmacological studies. Domain experts develop decision
trees that guide other users to choose among the alternatives, so that data regarding specific
events can be captured in a structured and consistent manner. In addition to representing
domain expertise, the knowledge base has certain syntactic rules that enable it to be
rendered in natural language.

In a second and very different application, marketing executives and medical professionals
create business rules that are used to create dynamic questionnaires for medical patients.
The tool is quite specific to producing a survey, although 1t is not limited to medical
guestionnaires. It could be used in any situation where a customer undergoes a prescreening
process before a consultation with an expert, such as a student meeting with their counselor
or a car owner bringing their automobile in for servicing.

Jim Tyhurst, Ph.D. Revised: Sept. 24, 2002 Page 1 of 5

OO0PSLA 2002 Domain Specific Languages

The two systems are completely different implementations for two different companies and
their rules are represented quite differently. However, several aspects of their architecture
are guite similar In some ways these systems are similar to expert systems, although in
each case the output is a structured report, rather than a diagnosis. Both systems represent
knowledge (or business rules) as static declarative data that is traversed at runtime as users
select from the available choices and enter data. However, an interesting characteristic of
both of these systems is that there are multiple views (or "interpreters") over the underlying
domain knowledge. The interpreters dynamically render the knowledge in various formats
for different audiences, such as end users, third party information consumers, domain
experts, and external business applications,

These gystems can be re-configured at runtime by domain experts releasing new rules or
revising rules, but the systems themselves do not generate new rules or modify their
behavior dynamically based on their interactions with users. So neither of these systemsisa
self-adapting system. For one particular configuration of the knowledge base, the systems
will behave deterministically, yielding identical results over time when two different users
pursue identical paths.

2. Design Problems

In this paper, | will discuss a few design problems that one encounters while developing a
business application that uses an independent representation of business rules. The primary
advantage to such a system is that domain-specific rules may be maintained directly by
domain experts. The problem is that rule development is still a type of software
development, so standard development issues related to version control, debugging, and re-
use still apply.

The material for this paper is drawn from several rule-based systems that have been
developed by the author over the past 18 years. However, the primary focus is on current
web-based architectures and the advantages of standard data formats, such as XML. Two
very different systems have been built over the past two years, so I will propose some
patterns for when one architecture might be more appropriate than another.

3. Editing Rules
3.1. Fat client vs. thin client

Many enterprigses have been involved in attempts to "webify" business applications, so it is no
surprise that tools for editing business rules are also faced with the choice of architectures
for fat client vs. thin client. An installed application with local application logic is especially
effective when:

(a) Response time must be faster than can be supported by a wide-area network.

(b) There is a very large rule base with strong inter-relationships requiring viewing,
navigating, and modifying the entire graph of rules. For example, when editing the
relationship between rules is just as important as editing an individual rule.

(¢} A small number of domain experts are working on unrelated sets of rules.

A thin client implemented with a web interface can be useful where:

(a2) Each rule is relatively independent of other rules.

(b) Editing a simple rule is more important and more common than editing the
relationship between rules.

{¢) Rules are relatively small in size, e.g. kilobytes, rather than megabytes.

(d) Domain experts are geographically distributed and there are large numbers of
domain experts entering and editing inter-related rules, where the addition or
change of one rule should be visible immediately to others.

Jim Tyhurst, Ph.D. Revised: Sept. 24, 2002 Page 2 of b

QOPSLA 2002 Domain Specific Languages

3.2. Including rules by reference

Business rules can often be stated in a general form that is re-usable in several contexts. In
order to re-use a rule, one might copy the rule into each context or one rule may simply refer
to another rule. In general inclusion by reference is desirable from the perspective of rule
maintenance, because changes to one central definition will be reflected in each context in
which the rule is used. However, inclusion by reference leads to its own set of problems for
the developers of the rule editor, because the references must be maintained properly. For
example, if rule A refers to rule B, can rule B be deleted? Also, the domain experts need to
be able to view and trace the references. For example, before modifying rule B, an expert
probably wants to know all of the rules that refer to B, so that a change to B will not cause
unintended consequences. Therefore, the rule editor should provide some type of "where-
used"” query.

3.3. Versioning rules

When rules are re-used in multiple contexts, versioning becomes extremely important.
Suppose we have two rules A and B that use sub-rule C and C is changed in some way from
version 1 to version 2. There are four possible configurations that result:

Possible configurations after a rule is modified,

Configurations (1) and (2) are likely candidates to be managed automatically by the rule
editor. KEither the change is not propagated, as in (1), or else it is propagated automatically
to all contexts, ag in (2). If either (3) or (4) is a desirable state, then the domain expert
probably needs to explicitly choose each environment to which the change is to be released.

For many systems, old versions of rules must remain in the system, in order to re-create
previous lines of inference. Thus, even when a system 1s designed to update references
automatically as n configuration (2) above, the original version of rule C may still be needed,
in order to print old reports or re-create logic based on the original rule C.

3.4, Debugging rules

it ig very useful to provide an interactive debugging environment for domain experts, so that
they can see the effects of rule changes. In some development environments, such as
implementing rules in Prolog, a full programming environment may be available to the
domain expert. In other cases, it may be sufficient to provide a run-time simulator, so that
the expert can observe the results of the rules when operating in an environment that is
gimilar (or identical)} to the end application. In this case, changes to the rules {or proposed
changes to the rules) must be deployable and executable rapidly, so that the domain expert
can quickly move from the rule editor to the execution environment and back again.

4, Storing Rules
4,1. Specifications of rules vs. implementation of rule behavior

Rules may be represented as specifications for behavior, rather than as implementations of
behavior. This allows for different implementations that are appropriate for the particular

Jim Tyhurst, Ph.D. Revised: Sept. 24, 2002 Page 3 of 5

OO0PSLA 2002 Domain Specific Languages

environment. The implementation may be functionally distinct, such as the difference
between a rule editor operating on a rule and report generator using the contents of a rule.
Or the implementations may be functionally equivalent, yet implemented with different
programming languages for different environments.

This approach has been used for years with grammars, where a declarative representation of
syniactic rules may be interpreted by any number of parsers. One parser might implement a
top-down algorithm, while another might implement a bottom-up algorithm. However, both
parsers can use the same statement of syntax.

4.2,

XML is becoming widely used as a common format for sharing data, Therefore, it makes
sense to store domain-specific languages as declarative rules in XML. For performance
reasons, it may be useful to compile the rules into objects or executable procedures.
However, the XML is the base representation upon which other interpreters are based.

XML as a common format for rule representations

One of the problems with XML is that the overhead can be excessive for a very large number
of rules. For example, I recently worked on a system where it was not uncommon to have a
graph of 48,000 nodes where each node must contain the same set of tags, even though there
might only be a small amount of unique domain information per node. In this case, the cost
of using XMI: may become prohibitive. On the other hand, for rules that have less structure
and more domain information per rule, the advantages of XML may exceed the cost of
additional rule size, especially if there is a small number of rules.

5.
5.1.

One of the advantages of storing rules as specifications (see Section 4.1) is that the same set
of rules may be used by different interpreters. For example, one interpreter might use the
rule to capture data from an end user, while another interpreter might generate a report
from the instantiated rule that contains data. The following diagram shows three different
applications operating from the same rule base:

Using Rules at Run-Time

Multiple interpreters

i

Rule Data Report ;‘ N;f'\}‘\ ,:)
Editor Capture Generator oo
P o Y \/..,_)'v’\f
Declarative

Rules

Multiple interpreters operating on declarative rules.
5.2,

An important requirement for rule-based systems is to have a mechanism for deploying new
or updated rules easily. Ideally, this becomes a procedure that can be managed by domain
experts, who make the decision of when to release changes into the operational environment.
As mentioned previously, versioning and configuration management may become a problem
when there are many dependencies or if application requirements mandate the ability to
replay a line of inference.

Deploying rules

Jim Tyhurst, Ph.D. Revised: Sept. 24, 2002 Page 4 of 5

r&.-gfv«’
jg a\,-.{*'m Y ff ;Pé

X

MQ

F/

N

E

T

OOPSLA 2002 Domain Specific Languages

6. Conclusion

In this paper, | have discussed a number of design decisions for rule-based systems. The
choice of one design over another will be determined by application conditions such as
properties of the rules (size, dependencies, grouping), usage of the application (number of
domain experts, location of experts, environment for end users), and requirements for using
the rules (re-use in several applications, ability to replay lines of inference).

7. References

Berman, Gerald D., Richard N. Gray, David Liu, and James J. Tyhurst. 2001. "Structured
radiology reporting: a 4 vear case study of 160,000 reports." Presented at the Integrating the
Healtheare Enterprise (IHE) Symposium of the Radiological Society of North America
(RSNA) 2001 Annual Meeting, November 25 - 30, 2001.

Tyhurst, James J. 1986. "Applying linguistic knowledge to engineering notes." In 8.C-Y, Lu
and R. Komanduri (eds.), Knowledge-Based Expert Systems for Manufacturing (PED-Vol.
24). New York: The American Society of Mechanical Engineers. pp. 131-136.

Tyhurst, James J. 1986. "Natural language processing applied to engineering notes.”
Ultratech Artificial Intelligence Conference Proceedings (Vol. 1), Long Beach, California. pp.
2-199 to 2-211.

Tyhurst, James J., and Kerry L. Glover. 1988. "A menu-based interface for expert system
rules.” In Proceedings of the 2nd Annual Expert Systems Conference and Exposition (April
12-14, 1988). Detroit: Engineering Society of Detroit. pp. 203-210.

8. Contact Information
Author

Jim Tyhurst, Ph.D.
jim@tyhurst.com

Tyhurst Technology Group LLC

14335 S. Hawthorne Ct., Oregon City, OR 97045
5(3.632.7416

www.tyhurst.com

Tyhurst Technology Group provides consulting services to deliver effective business solutions
based on the latest object-oriented architectures for enterprise applications. We have helped
new or expanding software development teams to define development processes that meet
their unigue requirements, while developing software that meets the business goals of the
client. This focus on business golutions ensures that the final deliverable of software will be
of the highest value to the client organization.

Workshop Organizers

OOPSLA 2002 Workshop: Using Domain Specific Language to Drive Business Applications.
http:/fwww.copsla.orgfap/filesfwor-26. htmi

Ali Avsanjani
arsanjan@us.ibm.com
IBM, E-business Application Development, Center of Competency.

Reza Razavi
razavi@acm.org
University of Paris, LIPS.

Jim Tyhurst, Ph.D. Revised: Sept. 24, 2002 Pagebof 5

